

Available online at www.sciencedirect.com

SciVerse ScienceDirect

TRANSPLANTATION
Reviews

Transplantation Reviews 26 (2012) 261-279

www.elsevier.com/locate/trre

New concepts and best practices for management of pre- and post-transplantation cancer

Josep M. Campistol^{a,*}, Valentín Cuervas-Mons^b, Nicolás Manito^c, Luis Almenar^d, Manuel Arias^e, Fernando Casafont^e, Domingo del Castillo^f, María G. Crespo-Leiro^g, Juan F. Delgado^h, J. Ignacio Herreroⁱ, Paloma Jara^j, José M. Morales^h, Mercedes Navarro^j, Federico Oppenheimer^a, Martín Prieto^d, Luis A. Pulpón^b, Antoni Rimola^a, Antonio Román^k, Daniel Serón^k, Piedad Ussetti^b
ATOS Working Group¹

^aHospital Clínic, Barcelona, Spain

^bHospital Puerta de Hierro, Madrid, Spain

^cHospital de Bellvitge, Barcelona, Spain

^dHospital La Fe, Valencia, Spain

^eHospital Marqués de Valdecilla, Santander, Spain

^fHospital Reina Sofia, Córdoba, Spain

^gComplejo Universitario A Coruña, La Coruña, Spain

^hHospital 12 de Octubre, Madrid, Spain

ⁱClínica Universitaria de Navarra, Pamplona, Spain

^jHospital La Paz, Madrid, Spain

^kHospital Vall d'Hebrón, Barcelona, Spain

Abstract

Solid-organ transplant recipients are at increased risk of developing cancer compared with the general population. Tumours can arise *de novo*, as a recurrence of a preexisting malignancy, or from the donated organ. The ATOS (Aula sobre Trasplantes de Órganos Sólidos; the Solid-Organ Transplantation Working Group) group, integrated by Spanish transplant experts, meets annually to discuss current advances in the field. In 2011, the 11th edition covered a range of new topics on cancer and transplantation. In this review we have highlighted the new concepts and best practices for managing cancer in the pre-transplant and post-transplant settings that were presented at the ATOS meeting. Immunosuppression plays a major role in oncogenesis in the transplant recipient, both through impaired immunosurveillance and through direct oncogenic activity. It is possible to transplant organs obtained from donors with a history of cancer as long as an effective minimization of malignancy transmission strategy is followed. Tumour-specific wait-periods have been proposed for the increased number of transplantation candidates with a history of malignancy; however, the patient's individual risk of death from organ failure must be taken into consideration. It is important to actively prevent tumour recurrence, especially the recurrence of hepatocellular carcinoma in liver transplant recipients. To effectively manage post-transplant malignancies, it is essential to proactively monitor patients, with long-term intensive screening programs showing a reduced incidence of cancer post-transplantation. Proposed management strategies for post-transplantation malignancies include viral monitoring and prophylaxis to decrease infection-related cancer, immunosuppression modulation with lower doses of calcineurin inhibitors, and addition of or conversion to inhibitors of the mammalian target of rapamycin.

E-mail address: JMCAMPIS@clinic.ub.es (J.M. Campistol).

1. Introduction

Improved methodology, availability of more effective immunosuppressive drugs, refined immunosuppressive regimens, perfected logistics in organ handling, and

^{*} Corresponding author.

¹ Aula sobre Trasplantes de Órganos Sólidos (ATOS) - the Solid-Organ Transplantation Working Group.

accumulated clinical knowledge have caused a gradual decrease in organ rejection over the years and, consequently, overall post-transplant patient survival has risen notably, with 1-year renal graft survival rates rising to over 90% [1,2]. Other solid-organ transplants also have excellent short-term graft survival rates: in 2008 at 1 year, post-transplantation graft survival rates were 87.2% for heart, 84.1% for liver, and 83.0% for lung transplant recipients [3]. However, in the past 20 years the long-term survival rates have changed very little, with minor changes in the yearly graft attrition rate of 5–10 years post-transplant for kidney (7.5–6.6), heart (6.4–5.1), liver (4.7–4.3), and lung (10.9–10.1) [3-5].

Chronic rejection and long-term complications of immunosuppression, such as nephrotoxicity, cardiovascular disease, infection, and malignancy are largely responsible for this lack of long-term improvement. Transplant recipients are at increased risk of developing malignancies because of longer life expectancy and chronic exposure to immunosuppressive agents, which not only impair normal immune function but may also have direct pro-oncogenic activity. Furthermore, long-term immunodeficiency places the transplant recipient at risk of oncoviral infection conducive to malignancy. Indeed, cancer incidence among transplant recipients is greater than in the general population [6-12].

A recent large study in 175,732 solid-organ transplant recipients (58.4% for kidney, 21.6% for liver, 10.0% for heart, and 4.0% for lung) from the US Scientific Registry of Transplant Recipients (1987–2008) and 13 regional cancer registries reported that the overall cancer risk was elevated, with 10,656 cases and an incidence of 1,375 per 100,000 person-years (standardized incidence ratios [SIR]: 2.10 [95% CI, 2.06–2.14]) [13].

After transplantation, cancer risk varies from no increase for several common cancers, to a many-fold increase for a number of virus-associated cancers. Overall, the most common malignancies in the post-transplant setting are non-melanoma skin cancer (SIR: 28.6), post-transplant lymphoproliferative disorder (PTLD) (SIR of non-Hodgkin's lymphoma [NHL], the primary PTLD: 8.1), Kaposi's sarcoma (KS) (SIR: 208.0), and anogenital cancers (SIR for vulva and vagina: 22.8 and SIR for penis: 15.8) (Table 1) [6,8,14,23,31-33].

In addition to the higher incidence, cancer usually progresses at a faster rate, has a worse prognosis, and is more refractory to treatment [34,35] in these patients. Although cardiovascular disease is still the predominant cause of mortality in patients with functioning grafts [36], it is expected that cancer will become the leading cause of death within the next 2 decades [34,37]. Therefore, it is imperative to streamline effective preventive, diagnostic, and

Table 1 Common post-transplant tumours in transplant recipients. [13,14].

Common malignancies		SIR Renal [8,13,14]	SIR Liver [9,13,15,16]	SIR Heart [13,14,17–20]	SIR Lung [13,21,22]
All cancers excluding non-melanoma skin cancer 2.4–3.9		2.2	2.5	3.6	
Non-melanoma skin cancers		16.6	6.6	18.5	16.1
Melanoma		1.4 - 6.3			
Non-Hodgkin's lymphoma		12.5	13.3	19.8	30.0
Hodgkin's lymphoma		7.4	8.9	11.4	5.0
Kaposi's sarcoma		17.1	144	10-22	
Lip		65.6	20.0	60	
Oral cavity		4.2	10.0	5.0	5.0
Anogenital cancer (anus, vulva, perineu	m)	10.0	3.3	7.5	20.0
Breast		1.0 - 1.5	0.8	0.8 - 2.4	0.3
Colorectal		1.4 - 2.4	2.3	1.1	1.1
Uterine cervix		1.6 - 5.7		14.3	
Kidney		6.7 - 7.9	1.8	2.9 - 14.4	2.5
Liver			43.3	1.2 - 3.3	
Lung		1.5 - 2.8	1.6-2.0	0.95 - 2.1	5.9-6.1
Multiple myeloma		3.3	0.8	3.2	2.6
Common risk factors	Renal transplant-specific [8,23-25]		Liver transplant- [26-29]	specific	Heart transplant-specific [18,30]
Immunosuppression (type and dose)	Chronic viral in	fection	HCV infection		Time-from-transplant
Conventional risk factors, i.e., age, smoking, male	Genetic risk fac	etors	Alcoholic cirrhosis.		Multiple transplantations
EBV seronegativity	Treatment with	cytotoxic agents	Azathioprine first year pos	t-transplant	
Sun exposure	Splenectomy		Cyclosporine treatment in j or with C_2 monitoring $(?)$	patients ≤50 years	
Pre-transplant malignancy	Diabetes Hypersensitised	patients	2 3()		

treatment measures in patients who are undergoing solidorgan transplantation.

The Spanish transplant ATOS (Aula sobre Trasplantes de Órganos Sólidos; the Solid-Organ Transplantation Working Group) Group meets annually to discuss current advances in the field of transplantation. In 2011, the 11th meeting of the ATOS Group focused on the mechanisms of oncogenesis in transplantation and the role of immunosuppression, assessment of epidemiologic, diagnostic, and risk factors associated with the development of post-transplantation malignancies, management strategies for decreasing the recurrence of pre-transplant malignancies, and the minimization of malignancy transmission from donor organs. In this article we aim to describe the new concepts and review the best practices for the management of pre- and post-transplantation cancer.

2. Mechanism of oncogenesis in transplantation and the role of immunosuppression

In the general population, cancer is characterised by six multistep biological hallmarks that include sustained proliferative signalling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, induced angiogenesis, and activated invasion and metastasis [38]. Two additional emerging hallmarks involved in the pathogenesis of the majority of cancers have been recently proposed: immuno-evasion and reprogrammed energy metabolism. Tumorigenesis in transplant recipients also follows this multifactorial pattern, with immuno-evasion playing a large role. Specific oncogenic mechanisms involve impaired immune activity against oncoviruses, impaired immunosurveillance of neoplastic cells, DNA damage and disruption of the DNA repair mechanism, and the upregulation of cytokines [39]. Tumorigenic lesions progressively grow, reaching a steady-state level of proliferating and apoptosing cells [40]. Vascularisation of the tumour to guarantee its blood supply is required to convert an in situ carcinoma into a rapidly growing malignancy. The initiation of angiogenesis has to occur to ensure exponential tumour growth [40]. This angiogenic switch leads to the overexpression of proangiogenic signals, such as vascular endothelial growth factor (VEGF), resulting in increased survival, proliferation, migration, and vascular permeability [40,41].

The causes of post-transplant malignancy are multifactorial (immunosuppression, oncogenic viruses, oncogenic effects of immunosuppression, chronic disease), with chronic immunosuppressive therapy having a large role, as shown by the elevated incidence of cancer observed in most medical conditions associated with immunosuppression [6,42], and the correlation between the length of exposure and intensity of immunosuppression with the incidence of cancer [43,44].

The high incidence of post-transplant malignancies and their aggressive progression are thought to be due to the resulting impairment of the organ recipient's immunosurveillance system [45]. Through cancer immunoediting, the immune system protects the host against development of nonviral malignancies and helps determine tumour immunogenicity. This consists of three phases: elimination or cancer immunosurveillance, equilibrium (a period of immune-mediated latency of existing malignant cells), and escape (tumour progression and metastasis) [46,47]. In immunocompetent individuals, immunosurveillance functions as a tumour suppressor and protects the immunocompetent host from the development of neoplasia. In organ transplant recipients, acquired immunodeficiency upon immunosuppressive therapy results in a lower threshold for immunosurveillance, allowing malignant cells to proliferate. There have been reports that transplant recipients receiving organs from donors who had previously been cured of a malignancy later went on to develop the donor's malignancy, suggesting that the cancer cells had been in equilibrium with the donor's fully functional immune system, but the post-transplant immunosuppression provided the stimulus for the malignant cells to escape the immune system and proliferate [48,49].

Chronic immunosuppression predisposes transplant patients to a variety of viral infections; some can induce oncogenesis and result in PTLD by the Epstein–Barr virus (EBV), KS (human herpes simplex virus type 8 [HHV-8]), or skin and/or cervical cancers (human papillomavirus [HPV]) (Table 2). Oncoviruses act on various cellular signalling pathways, leading to immortalization and proliferation of the infected cells by disrupting the mitotic checkpoint upon infection of the host cell [51-53]. Upon cellular infection, virally encoded gene products can functionally inhibit or lead to the proteasomal degradation of many tumour suppressor proteins. Virally infected cells can either be eliminated via cell-mediated apoptosis or establish long-term persistent chronic infections that can lead to oncogenesis.

Table 2 Viruses with oncogenic potential [50].

Virus	Malignancy
Human papillomaviruses (HPV)	Cervical carcinoma
	Non-melanoma skin cancer
	Anogenital cancer
Human polyomaviruses	Mesotheliomas
(BKV, JCV, SV40, MCV)	Brain tumours
	Merkel cell carcinoma
Epstein-Barr virus (EBV)	PTLD
	Nasopharyngeal carcinoma
Human herpesvirus (HHV8)	Kaposi's sarcoma
•	Primary effusion lymphomas
Hepatitis B virus (HBV)	Hepatocellular carcinoma
Hepatitis C virus (HCV)	•
Human T-cell lymphotropic virus type 1	T-cell leukaemias
(HTLV-1)	
Helicobacter pylori	Gastric carcinoma

MCV=Merkel cell polyomavirus; PTLD=post-transplant lymphoproliferative disorder.

There are indirect and direct viral strategies of oncotransformation [51-53]. The indirect strategies include the inactivation of tumour suppressor genes, such as *Rb* and *p53*, blocking of apoptosis, immuno-evasion, and impairment of cell-mediated immunity. The direct oncogenic viral strategies include expression of viral oncoproteins, activation of oncogenes (c-*myc*), promotion of cellular proliferation, induction of cytokine release, immunosuppression, and angiogenesis. In addition to predisposing transplant recipients to a higher risk of viral infection, calcineurin inhibitors (CNI) also increase the expression of EBV growth and virus-inducing factors (interleukin[IL]-1, IL-6, and transforming growth factor [TGF]-β), promote EBV replication, and increase immunoresistance by promoting the expression of anti-apoptotic genes [54].

Treatment with immunosuppressant agents not only causes impaired immunosurveillance of emerging malignant cells and multiplies the risk of oncoviral infection, it also displays direct pro-oncogenic activity in the case of CNIs (Fig. 1) [45,55,56]. There are various mechanisms by which CNIs may promote tumorigenesis and tumour growth, such as the induction of cancer cell invasiveness [45], the inhibition of DNA repair mechanisms [57,58] and apoptosis [58], the promotion of transcription and functional expression of the TGF-β1 gene leading to tumour cell invasion and metastatic potential [59], and the promotion of tumour

angiogenesis via the stimulation of VEGF [56,60]. To overcome this problem, immunosuppressive agents with low oncogenic or even anti-oncogenic properties are being clinically developed [42,56,61,62].

3. Pre-transplant cancer

3.1. Donors with cancer: Challenges and recommendations

Transmission from the donor is a rare but clinically significant complication in solid-organ transplantation [63]. Donor-derived disease transmission potentially complicates less than 1% of all transplant procedures, but when a transmission occurs, significant morbidity and mortality can result [64]. The literature related to donor-derived malignancy transmission is limited to anecdotal reports, registry series, and retrospective studies [64]. The inconsistent reporting to transplant cancer registries, with overestimation in some cases (Israel Penn International Transplant Tumor Registry [IPTTR]) and underreporting in others (Organ Procurement and Transplantation Network [OPTN]) further complicates interpretation of donor-transmitted cancer data. Depending on registries, 0.5%–3% of donors have a history of cancer, and transmission from these donors has been demonstrated in 0.02%-6% of recipients [63-69]. This figure is much higher in the IPTTR registry, which by its

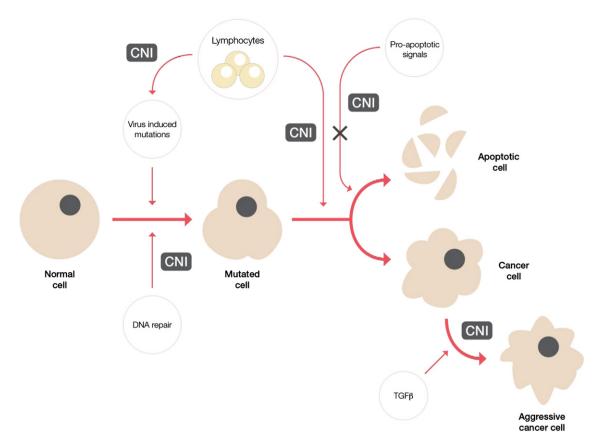


Fig. 1. Immunosuppression-driven oncogenesis. Adapted from Gutierrez-Dalmau and Campistol 2007 [42]. CNI=calcineurin inhibitors; $TGF\beta$ =transforming-growth factor β .

nature is subject to reporting bias and tends to overestimate tumour transmission. High tumoural transmission was found among recipients of organs from donors with renal carcinoma (63%), melanoma (77%), and choriocarcinoma (93%). Other tumours transmitted were lung (41%), colon (19%), breast (29%), prostate (29%), and KS (67%) [70]. The threat of donor-to-recipient transmission varies, depending on which organ is being transplanted. Data from OPTN indicate that the liver, kidney, and heart (in this order) carry the highest risk [71,72].

Given the impact of donor-transmitted malignancy on the outcome of organ transplantation, detection of malignancy is an important measure of donor suitability. Not all malignancies, however, constitute an absolute contraindication to donation. Organ donation is usually not excluded in the presence of low-grade skin cancers, low-grade solid-organ tumours with a greater than 5-year documented tumour-free interval, and primary brain tumours that have not been treated with previous surgery. Donor kidneys with small cell renal carcinoma and low histological grade can be managed with excision and transplantation, with a low risk of tumour recurrence in the recipient [73,74]. Similarly, organs from donors with carcinomas in situ and non-metastasizing central nervous system (CNS) tumours are usually suitable for transplantation [75,76]. The United Network of Organ Sharing (UNOS) donor acceptance criteria guidelines require that medical suitability of the organ donor be determined by an assessment of several donor parameters, with specific recommendations to screen for malignancy to minimize the transmission of malignant donor cells to the transplant recipient (Table 3) [77-80]. As with other donor selection criteria, it is crucial that potential recipients are warned of the risk, and that any organ might transmit malignancy, particularly if it is from a donor with a known history of malignancy, and that the recipient is fully informed and closely involved in the decision-making process. Recently, the subcommittee to examine donor-related malignancy transmission (Malignancy Subcommittee) of the Disease Transmission Advisory Committee (DTAC) of OPTN/ UNOS suggested risk categorisations for specific tumour types (Table 4) [81]. Benign tumours for which malignancy was excluded were reported to have no significant risk of

Table 3
Recommendations for malignancy screening in potential donors.

Malignancy-specific recommendations for screening [77-79]

- Complete medical history to include previous diagnosis of neoplasia
- Unexplained intracranial haemorrhage (to rule out a metastasis as the cause)
- In women, menstrual disorders, as a metastatic choriocarcinoma may be the underlying cause
- Physical examination should rule out any possible skin malignancies
- Laboratory analysis for detection of tumour markers; it is recommended that blood samples be stored for future analysis
- Radiology tests
- Pathologic examination of extracted organs

disease transmission. As mentioned in the section above, the transmission of malignant cells from the donor to the transplant recipient when the donor did not have an overt malignancy suggests that the malignant cells were never completely removed from the donor's body, remaining in a dormant state and/or in equilibrium with the donor's immunocompetent immune system [49,67,71]. The immunosuppression in the recipient provided the stimulus to overcome the immune defense and enter into the phase of "escape" and formation of a full-blown cancer [46].

3.2. Solid-organ transplantation candidates with cancer or a history of malignancy

When placing a patient on the waiting list for a solidorgan transplant, it is important to consider if there is a history of malignancy. The impact of immunosuppression on cancer recurrence must be weighed against the risk of death from organ failure without transplantation. The eligibility criteria for transplant candidates have broadened, increasing the age limits and widening the number of indications, and as a result, the number of transplant candidates with a history of previous malignancy is growing. The consensus is that tumour type and stage of disease must be considered, and a series of recommendations has been proposed concerning waiting periods between diagnosis and cancer treatment that aim to facilitate decision-making prior to proceeding with transplantation in these patients (Table 5) [82-84]. The individual prognosis of each malignancy in terms of 5-year survival rates should be considered and should not fall below the general 5-year life expectancy after solid-organ transplantation. In non-renal organ transplantation, available data and outcome of recipients who previously had a malignancy are generally limited, hindering the establishment of organspecific disease-free intervals between cancer remission and transplantation [85]. In general, the recommendations for renal transplant candidates are followed for other organ transplants; however, non-renal transplant candidates with underlying high-risk disease and comorbidity are unlikely to be able to endure the waiting period recommended for some cancers. Therefore, providing that the cancer is adequately controlled and the malignancy stage itself does not have a poor prognosis, transplantation in the non-renal transplant population may be considered before completion of the waiting period with informed consent of the candidate [86].

3.2.1. Transplantation as treatment for organ-specific malignancy

Transplantation is not the main indication for treatment of malignant tumours; however, transplantation can be considered in very well selected lung carcinomas and unresectable heart tumours, such as cardiac angiosarcomas [87] and cholangiocarcinoma [88]. It is acceptable in unresectable chemosensitive hepatoblastoma, epithelioid haemangioendothelioma, liver metastasis of neuroendocrine tumours, and in hepatocellular carcinoma (HCC) [88].

Table 4
Suggested risk categorisations for specific tumour types by the Malignancy Subcommittee of the Disease Transmission Advisory Committee of the OPTN/UNOS. Adapted from Nalesnik et al. 2011 [81].

Risk category	Recommended clinical use	Tumours
Minimal risk (<0.1% transmission)	Clinical judgement	Basal cell carcinoma, skin
		SCC, skin without metastases
		In situ non-melanoma skin carcinoma
		In situ cervical carcinoma
		In situ vocal cord carcinoma
		In situ bladder carcinoma
		(nonrenal transplant only)
		Solitary papillary thyroid carcinoma, ≤0.5 cm
		Minimally invasive follicular carcinoma, thyroid, ≤1.0 cm
		(Resected) solitary renal cell carcinoma, ≤1.0 cm
Low risk (0.1%–1% transmission)	Use in recipients at significant risk	(Resected) solitary renal cell carcinoma, >1.0 cm ≤2.5 cm
,	without transplant	Low grade CNS tumour (WHO grade I or II)
	1	Primary CNS mature teratoma
		Solitary papillary thyroid carcinoma, 0.5–2.0 cm
		Minimally invasive follicular carcinoma, thyroid, 1.0–2.0 cm
		History of treated non-CNS malignancy (≥5 years prior) with
		>99% probability of cure
Intermediate risk	Use of these donors is generally not recommended	In situ breast carcinoma
(1%–10% transmission)	except in circumstances where recipient's expected	In situ colon carcinoma
(,	survival without transplantation is very short	(Resected) solitary RCC T1b, 4–7 cm
		History of treated non-CNS malignancy
		(≥5 years prior) with probability of cure between 90% and 99%
High risk (>10% transmission)	Use of these donors is discouraged except in	Malignant melanoma
riigii ribii (1070 tiunomioonom)	rare and extreme circumstances	Breast carcinoma>stage 0 (active)
		Colon carcinoma>stage 0 (active)
		Choriocarcinoma
		CNS tumour with shunt, surgery, irradiation, or metastasis
		CNS tumour WHO grade III or IV
		Leukaemia or lymphoma
		History of melanoma, leukaemia or lymphoma,
		small-cell lung/neuroendocrine carcinoma
		History of treated non-CNS malignancy (≥5 years prior) with
		<90% probability of cure
		Metastatic carcinoma
		Sarcoma
		Lung cancer (stages I-IV)
		RCC >7 cm
		rece / em

CNS=central nervous system; OPTN=Organ Procurement and Transplantation Network; UNOS=United Network of Organ Sharing; SCC=squamous cell carcinoma; RCC=renal cell carcinoma; WHO=World Health Organization.

3.2.1.1. Hepatocellular carcinoma and expanded Milan criteria. Liver transplantation offers the best long-term oncologic results in patients with HCC [89]. HCC is the fifth most common cancer worldwide [90], and has rates that have risen significantly in Western Europe, North America, and Oceania [91]. It develops in the context of cirrhosis in 80% of patients. Liver transplantation for HCC in the late 1980s and early 1990s achieved poor results, with 5-year survival ranging from 20% to 36% attributed to selection of recipients with advanced stage cancer [92]. In 1996, Mazzaferro and colleagues proposed the Milan criteria that translated to a patient survival rate of 75% at 4 years (Table 6) [84,95]. In the past decade, post-transplant survival rates in patients beyond Milan criteria have nearly matched those of patients fitting the criteria [93,96-99]. A study by Yao and colleagues at the University of California, San Francisco (UCSF) concluded that a modest expansion of the criteria could

maintain survival while increasing the number of transplantation candidates [93,97-99]. The UCSF criteria [93] have been independently validated based on either tumour pathology or radiological staging [100-102]. A recent study by Mazzaferro and colleagues using the "up-toseven" criteria reported 5-year survival similar to patients selected according to the Milan criteria [94], and the authors suggested that more patients with HCC could be candidates for transplantation if the Milan criteria were replaced with a more precise estimation of survival contouring individual tumour characteristics and use of the "up-to-seven" criteria. A recent prediction model using the Barcelona Clinic Liver Cancer (BCLC) staging that assesses prognosis of patients with HCC found that the patients' BCLC stage was able to significantly predict the 5-year liver transplant benefit in patients with HCC without absolute contraindications to liver transplantation [103]. Importantly, they noted that liver

Table 5
Proposed malignancy-free delay periods before transplantation.

Time	European guidelines [82]	American guidelines [83]
No delay	Incidental RCC	Incidental RCC
	Basal-cell skin cancers	Basal-cell skin cancers
		Bladder carcinoma in situ
Less than 2 years	In situ carcinomas	
	Small single focal	
	neoplasms	
	Low-grade bladder	
	cancer	
	Excised SCC	
	Prostate (1-2 years)	
2 years	Lymphoma	Invasive bladder
(also includes	Thyroid	Symptomatic renal
cancers otherwise	Testicular	Testicular
not listed)	Symptomatic renal	Thyroid
		Prostate
		Lymphoma
More than 2 years	Malignant melanomas	Breast cancer
	(>2 years)	(2-5 years)
	Breast cancer	Malignant melanoma
	(>3 years)	(2-5 years)
	Colorectal cancer	Colorectal cancer
	(>5 years)	(0-5 years,
	Invasive cervical	depends on stage)
	cancer (4-5 years)	
	Invasive bladder	
	(>5 years)	

SCC=squamous cell carcinoma; RCC=renal cell carcinoma.

transplantation provided survival benefit in patients with advanced liver cirrhosis and in patients with intermediate HCC, regardless of the tumour number—size criterion, provided there was no macroscopic vascular invasion and extra-hepatic disease. The authors suggested that the use of BCLC could help improve the selection process for liver transplantation by increasing the homogeneity of the organ allocation system between patients with HCC and those with other indications for transplantation [103].

Another method for allowing patients with HCC outside the Milan criteria to become transplant candidates is to downstage the tumours before transplantation [104,105]. Radiofrequency ablation, ethanol injection, selective internal radiation therapy, and transarterial chemoembolisation are locoregional therapies currently used in HCC downstaging. A complete response after transarterial chemoembolisation has been associated with excellent post-transplantation

outcomes in patients with HCC that exceeded the Milan criteria [106]. A recent systematic review of the literature reported the outcome of patients with HCC outside the Milan criteria who underwent successful downstaging before liver transplantation to determine the survival and recurrence rates [105]. Of the 720 patients in eight selected observational studies who received downstaging treatment, 305 (42%) were successfully downstaged, of whom 186 (26%) underwent transplantation. Patients downstaged to within the Milan criteria achieved survival results similar to patients originally within the Milan criteria, with 3-year survival 79%–100% and 5-year survival 55%–94%. Recurrence rates were similar at 2 years post-transplantation [105]. Long-term multicentre clinical studies might be necessary to establish a definitive consensus on the benefits of pre-transplantation HCC tumour downstaging.

3.2.1.2. Bronchoalveolar cell carcinoma. Unlike liver transplantation for HCC, there is only anecdotal evidence that lung transplantation may be beneficial as a treatment option in some patients with lung cancer, such as those with extensive bronchoalveolar cell carcinoma [107-109]. This tumour is a subtype of non-small-cell lung cancer with unique clinical and pathologic characteristics that is generally localized to the lung and does not usually metastasize [110]. Surgical resection yields a good longterm outcome, but when the disease is diffuse or bilateral, survival beyond 2 years from diagnosis is rare, and singleand double-lung transplantation has been proposed as a curative measure [111]. Although data are scarce, a few reports suggest that lung transplantation may be an option for unresectable or recurrent bronchoalveolar cell carcinoma confined to the lungs, although recurrence of the original tumour within the donor lungs was common at 4 years posttransplantation [112,113].

4. Post-transplant cancer

Post-transplantation incidence of malignancies is increased in solid-organ transplant recipients versus the general population [7,14,17,114]. The 25-year cumulative cancer incidence after renal transplantation was 49% for all tumours and 40% excluding non-melanoma skin cancers [23]. Similar qualitative data have been obtained for other

Table 6
Tumour staging for patients with HCC.

	Milan criteria [84]	UCSF criteria [93]	Up-to-seven criteria [94]
Definition	1 tumour ≤5 cm or 2-3 tumours ≤3 cm and no vascular invasion and/or extrahepatic spread	1 tumour ≤6.5 cm or 2-3 tumours ≤4.5 cm, with a total diameter ≤8 cm and no vascular invasion and/or extrahepatic spread	7=sum of the size of the largest tumour [in cm] and the number of tumours
5-year survival	73%	75%	71%

HCC=hepatocellular carcinoma; UCSF=University of California, San Francisco.

organs [115,116]. Reports of post-transplantation malignancies include recurrence of pre-transplant malignancies or *de novo* cancers.

4.1. Recurrence of pre-transplant cancer

Risk of cancer recurrence among patients treated for the disease before transplantation is inversely proportional to the length of time bridging both events [86,117]. Because chronic immunosuppressive therapy is associated with an increase in malignant disease, the current notion is that a history of malignancy puts the patient at high risk for relapse after transplantation. However, there is little reliable evidence that immunosuppression uniformly alters the risk of a patient with malignancy in remission [85,117]. Rates of risk of cancer recurrence after transplantation in patients with preexisting malignancies are listed in Table 7.

4.1.1. Recurrence of HCC in liver transplantation recipients Despite the 5-year 60%–80% disease-free survival rate in liver transplant recipients with unresectable early HCC, approximately 3.5%–21% of liver transplant recipients will experience a post-transplant HCC recurrence, which has a very poor prognosis [119]. Recurrence of HCC in liver transplant recipients is thought to occur either via occult

undetected extrahepatic metastases or via the release of

Table 7
Risk of recurrence after renal or liver transplantation in patients with preexisting malignancies [117].

Risk of recurrence	Renal transplant recipients [85,118]	Liver transplant recipients [85]
Low recurrence rate (0%–10%)	Incidental RCC (0%) Lymphomas (10%) Testicular, uterine cervical (5%), thyroid (7%) carcinomas	Incidental RCC (0%) Lymphomas (6%) Malignant melanoma (0%) Cervix carcinoma (0%) Endometrial carcinoma (0%) Myeloproliferative disorder (7%)
Intermediate recurrence rate (11%–25%)	Colorectal cancer (20%) Prostate cancer Breast cancer (24%) Carcinoma of the uterine body Wilms' tumours	Thyroid carcinoma (25%) Colorectal cancer (19%) Non-melanoma skin cancer (24%)
High recurrence rate (<26%)	Non-melanoma skin cancer (60%) Melanoma skin cancer (29%) Symptomatic RCC (30%) Bladder carcinoma Sarcomas Myelomas	Breast cancer (33%) Oral squamous carcinoma (33%)

RCC=renal cell carcinoma.

tumoural cells during the transplantation procedure, with migration to the liver graft (40%–70% of recurrence cases) or other organs [120]. There are relatively few studies aiming to prevent recurrence of HCC in liver transplant recipients. Mammalian target of rapamycin (mTOR) inhibitors, such as sirolimus and everolimus, seem to improve disease-free and survival-rates, although large prospective trials that are specifically designed to look at rates of HCC recurrence are lacking [121-123]. The SiLVER Study is an ongoing open-label prospective randomised controlled trial comparing sirolimus-containing versus mTOR-inhibitorfree immunosuppression in patients undergoing liver transplantation for HCC to evaluate whether immunosuppression with sirolimus can reduce HCC recurrence (NCT00355862) [124]. A recent small study that evaluated the combination of an mTOR inhibitor and sorafenib, a multikinase antiangiogenic inhibitor, in patients with recurrent HCC following liver transplant concluded that this regimen could be effective despite notable toxicity [125]. A recent article has proposed several strategies to decrease the engraftment of circulating tumour cells to decrease the risk of recurrence and increase eligibility criteria for transplantation in patients with more advanced HCC (Table 8) [120]. Results from ongoing randomised clinical trials with mTOR inhibitors in patients with HCC are expected to provide specific guidance on their use in this population [124].

4.2. Common post-transplantation de novo malignancies

Post-transplant de novo malignancies are frequent in all solid-organ recipients, although they are more frequent among heart and lung recipients owing to strong immunosuppression regimens. Age- and sex-adjusted 10-year incidence of de novo cancers is twice that of the general population, with the incidence of nonmelanoma skin cancer being 13 times higher [14]. As mentioned earlier, viral infection is a major risk factor for multiple types of cancer (Table 2). Common risk factors contributing to development of post-transplant cancer are listed in Table 1. In addition, a recent study reported that the use of angiotensin-converting enzyme (ACE) inhibitors or angiotensin-receptor blockers (ARBs) after kidney transplantation among smokers was associated with an increased risk for respiratory/intrathoracic organ cancers, the SIR was significantly higher with ACEinhibitor/ARB use (1.65 vs 1.09 for no ACE inhibitor/ARB use; P=0.033) [129]. Multivariate analysis showed that ACE-inhibitor/ARB treatment was not associated with an increased risk of respiratory cancers in nonsmokers. But in patients with a history of smoking, the risk of respiratory tumours was 7.10 in patients treated with ACE inhibitor/ ARBs compared with 2.77 in those without ACE-inhibitor/ ARB use (P < 0.001), a 2.5-fold higher risk on top of the increase from smoking per se.

Most common post-transplant malignancies include nonmelanoma skin cancer, lymphoma and PTLD, and KS, as

Table 8

Proposed strategies to decrease the release and engraftment of circulating tumour HCC cells and prevent post-liver transplant recurrence. Adapted from Toso et al., 2011 [120].

Strategy Definition

Selecting recipients with low pre-transplant levels of circulating HCC cells Selection cut-off based both on morphology (total tumour volume ≤115 cm³)

Decreasing the peritransplant release of HCC cells

Preventing the engraftment of circulating HCC cells in the liver

Using anticancer drugs

Tumour-customised immunosuppression via cytotoxic activity of natural killer (NK) cells

Selection cut-off based both on morphology (total tumour volume ≤115 cm³ and biology (AFP ≤400 ng/mL) appears to exclude patients with more aggressive HCC [126]

Use of the "no touch" technique for liver resection during surgery because liver and HCC mobilisations potentially increase the risk of HCC cell release

Early liver graft injury increases the risk of metastases

Tumour invasiveness is linked to the acute-phase liver graft injury

Protective strategies to prevent ischaemia-reperfusion lesions could potentially decrease recurrences

Licartin ([¹³¹I] metuximab injection) significantly improved survival [127] mTOR inhibitors have shown protective effects in preclinical, single-center, and registry-based studies [128]

Sorafenib (±mTOR inhibitors) should be assessed after liver transplantation in patients with high risk of recurrence [125]

Heparanase inhibition via low-molecular-weight heparins or PI-88 could prevent tumour invasion and metastasis

Excessive immunosuppression should be avoided

AFP=alpha-fetoprotein; HCC=hepatocellular carcinoma; mTOR=mammalian target of rapamycin.

well as a number of other solid tumours, particularly in the lung (Table 1).

4.2.1. Non-melanoma skin cancer

Solid-organ transplant recipients are up to 250-times more likely to develop non-melanoma skin cancer (mainly squamous cell carcinoma [SCC] but also basal) than people without transplants. Risk factors for skin cancer include sun exposure, age, previous history of neoplasia, and immunosuppression. Treatment with cyclosporine accelerates the overall development of skin cancers [8,130], whereas treatment with azathioprine increases the risk of SCC; on the other hand, administration of mycophenolate mofetil (MMF) reduces the risk [18,131]. Specific recommendations for immunosuppressive therapies for the treatment of skin cancer are lacking, although mTOR inhibitors have been associated with reduced cancer incidence [132,133].

4.2.2. PTLD/lymphoma

PTLD/lymphoma is a heterogeneous group of diseases characterised by excessive proliferation of lymphoid cells that frequently results from infection or reactivation of latent EBV [134,135]. PTLD is mainly associated with EBV infection, either through an EBV seronegative recipient who received an EBV seropositive organ from the donor or through a primary infection in EBV negative recipients, usually children [136]. PTLD occurrence also depends on the type of organ transplantation, with intestinal transplantation having the highest rates, followed by heart, lung, liver, and kidney [136].

There is a close relationship between immunosuppression dose-intensity and PTLD incidence [137-141]. Patients who are heavily immunosuppressed are at increased risk of developing PTLD [141] and, conversely, recipients who

receive less immunosuppression have a lower risk [142]. The type of immunosuppression regimen is also a risk factor for PTLD development, with a higher risk in patients who receive T-cell depleting antibodies, such as OKT3 or antithymocyte globulin, in cases where immunosuppression must be higher to prevent acute rejection, and in patients who are receiving maintenance immunosuppression with three agents. Treatment with cyclosporine has also been reported to accelerate the development of lymphoproliferative disease [8,130]. Treatment with belatacept, a selective co-stimulation blocker recently approved for renal-transplant recipients, results in an increased frequency of PTLD, specifically, PTLD involving the central nervous system [143,144]. The majority of PTLD events were diagnosed within the first 12 months post-transplant in patients who were EBV seronegative and in patients who received higher doses of belatacept. There were no new cases of PTLD between years 2 and 3 [145].

4.2.3. Kaposi's sarcoma

Risk of KS is increased 500-fold in solid-organ recipients compared with the general population, and represents approximately 4% of all post-transplant tumours [146,147]. KS is a multifocal angioproliferative neoplasm driven by HHV-8 infection. Two mechanisms have been described: HHV-8 contamination from the donor organ and HHV-8 reactivation in recipients seropositive for HHV-8 [148-151]. HHV-8 is a complex DNA virus, and infection can result in deregulation of cell growth and survival, angiogenesis, inflammation, and modulation of immune system in favour of tumour growth [152]. In vitro, HHV-8 up-regulates VEGFR, causing long-term proliferation and survival of endothelial cells [153]. Blocking the interaction between

VEGF and its receptor has been shown to abolish VEGF-induced proliferation, therefore inhibiting the progression of KS [154]. KS oncogenesis involves the stimulation of tuberin phosphorylation, promoting the activation of the mTOR pathway [153] and contributing to cell survival, growth, and production of angiogenic factors. mTOR plays an essential role in the expression of the replication and transcription activator (RTA), the lytic switch protein of HHV-8. A recent study reported that an mTOR inhibitor was able to block lytic reactivation of HHV-8 in vitro [155].

Because the course of KS depends on the level of immunosuppression, the treatment cornerstone is to taper down immunosuppressive regimens to the lowest possible level associated with regression of lesions [156]. Specific local or, less frequently, systemic treatment modalities can be used, such as chemotherapy. Recently, sirolimus has proven effective in the treatment of KS among kidney recipients; it inhibits disease progression while providing effective immunosuppression [157]. Studies are ongoing to assess whether immunosuppression by mTOR inhibitors can provide prevention in high-risk patients.

4.2.4. Others

4.2.4.1. Anogenital cancer. Transplant recipients have an increased incidence of tumours of the anogenital region (anus, vulva, perianal region, penis, scrotum or perineum). They are most frequently reported in women and in recipients with multiple sexual partners, infection with HPV, a history of genital herpes, the presence of skin cancers, and a high level of immunosuppression. HPV is one of the most frequent infections in transplant recipients and various types are associated with skin, cervix, penis, or anogenital carcinomas [158]. The prevalence of anogenital warts increases with the length of graft survival, and up to 50% of renal transplant recipients with graft survival >5 years have anogenital warts [159].

4.2.4.2. Renal cancer. The risk of renal cancer is most elevated in kidney transplant recipients; however, it is also increased in liver transplant recipients and heart recipients [13]. Renal tumours that develop in solid organ transplant recipients may differ from the tumours that develop in the general population [160]. In general the renal cancers that develop in organ recipients are smaller asymptomatic renal masses that are low grade and low stage tumours with a favourable prognosis [160,161]. Removal of the small renal masses is usually done with surgical treatment. In order to diagnose the tumours at an early stage a regular yearly abdominal ultrasound screening is recommended [161,162].

4.3. Spanish Post-Heart Transplant Tumour Registry

In an attempt to overcome shortcomings commonly associated with single-centre studies, the Spanish post-heart transplant tumour registry incorporates data from all heart transplant units across the national territory [116]. Similar

to other organs, risk of malignancy among recipients of heart transplants is greater than in the non-transplanted population. Interestingly, they also show that while skin cancer is still the most common post-transplant malignancy, PTLD is no longer the second most common malignancy, probably because of the introduction of prophylactic therapy against EBV. A study on the influence of induction therapy, immunosuppressive regimen, and antiviral prophylaxis on development of lymphomas after heart transplantation reported that induction increased the risk of lymphoma if antiviral prophylaxis was not used (regardless of induction agent and antiviral agent), but did not increase the risk if antiviral prophylaxis with acyclovir or ganciclovir was used in a multivariate analysis that controlled for age group, sex, pre-HT smoking, and immunosuppression in the first 3 months with MMF and/ or tacrolimus [163].

4.4. Effective management of post-transplant cancer

Management of transplant patients varies depending on the type of organ transplanted. Because of increased tumour risk and comorbidity, limitations in therapeutic intervention, and lower life expectancy in solid-organ transplant recipients, specific preventive and management recommendations can differ from those for the general population.

4.4.1. Screening

In general, careful long-term screening protocols are recommended for early detection of malignancies because this is associated with increased chance of survival. Lymphoma (PTLD) and solid-organ tumours must be screened through regular visits to the doctor at pre-scheduled intervals, particularly in the first years after transplantation (Table 9) [164]. Two studies of intensive overall screening protocols for tumour surveillance in liver transplant recipients have shown a significantly improved survival (Table 10) [174,175]. Early detection of pre-cancerous skin lesions through skin self-examination leads to early referrals to the dermatologist and results in better prognosis relative to other neoplasms [165].

4.4.2. Prevention

To reduce cancer risk, sun exposure should be minimized with sunblock and clothing, and premalignant lesions, such as warts and actinic keratoses, should be treated early. Administration of low-dose retinoids could be useful in treating premalignant lesions and reducing skin cancer risk. Other general preventive measures include smoking cessation, following a balanced diet plan, and getting enough exercise.

4.4.2.1. Prevention of viral infections. Because the post-transplantation risk of certain cancers is linked to infection with viruses, prevention and control of viral infections are crucial, particularly in patients who develop a primary viral infection and in chronic carriers of EBV, HHV-8, HPV, hepatitis B virus (HBV), and hepatitis C virus (HCV).

Table 9
Proposed prevention, screening, and prophylaxis programs to reduce post-transplantation malignancies based on specific risk factors.

Cancer site (refs)	Active protection	Screening	
		Туре	Frequency
Skin [164–166]	Photoprotection	Skin autoexam	Monthly
	Retinoids	Dermatologist visit	Annually
	mTOR inhibitors (?)		
	HPV vaccine (?)		
Lymphomas [167]	EBV viral load monitoring		
	Acyclovir prophylaxis		
	Reduction in immunosuppression		
Cervix [164,168]	HPV vaccine	Pap smear	Annually
Breast [169]		Mammography	Every 2 years
Prostate [166,170]		Digital rectal exam and prostate-specific antigen	Annually
Colorectal [171,172]		Fecal occult blood test	Annually
		Sigmoidoscopy	Every 5 years
		Colonoscopy	Every 10 years
Head and neck [27,164]	No tobacco	Laryngoscopy	Annually
	HPV vaccine (?)		
Lung [173]	No tobacco	Chest X-ray and CT	Annually
Kidney and urothelia [27,164]	No tobacco	Sedimentation and echography	Annually

CT=computed tomography; EBV=Epstein-Barr virus; HPV=human papillomavirus; mTOR=mammalian target of rapamycin; Pap=Papanicolaou.

Measures to prevent and control post-transplantation infections include careful screening of recipients and donors for infectious disease, prophylactic antiviral therapy, meticulous postoperative care, judicious use of immunosuppression, laboratory and other diagnostic tests, and early treatment of infections. The potential for pre-transplant vaccination to prevent HPV-related SCC should be explored in transplant recipients. Regarding prophylaxis, use of acyclovir to treat cytomegalovirus has been shown to reduce

the incidence of lymphoma in renal and heart transplant recipients [114,176].

Antiviral agents may be necessary to avoid the risk of complications such as lymphoma when using induction therapy with antibody-based therapies (e.g., muromonab-CD3 and the anti-CD25 antibodies basiliximab and daclizumab) during the first weeks after post-transplantation [9,176-178]. In this respect, cytomegalovirus prophylaxis during induction therapy (with agents other than IL-2

Table 10 Intensive screening protocols for tumour surveillance in liver transplant recipients. Adapted from Chak et al 2010 [26].

Reference	Traditional screening*	Intensive screening*	Results
Finkenstedt 2009 [174]	 Chest X-ray Abdominal US Chest and abdominal CT[†] Mammography and urologic screening[‡] 	 Chest and abdominal CT PSA Gynaecologic screening Skin examination Colonoscopy[§] 	Improved median overall survival in the intensive screening group (11.3 vs 3.1 years, P =0.001)
Herrero 2009 [175]	• None	 Chest X-ray Abdominal US Mammography (every 2 years) Colonoscopy[¶] ENT clinic visit (>20 pack year smoking) CT scan (>20 pack year smoking) PSA (age>55) 	At 25-month median follow-up, survival in intensive screening group was 100% with 11 malignancies vs 25% survival with 28 malignancies (P =0.002)

 $CT = computed\ tomography;\ ENT = ear,\ nose,\ and\ throat;\ PSA = prostate-specific\ antigen;\ US = ultrasound.$

- * Each test was performed annually unless otherwise noted.
- † Only in patients with history of malignancy.
- [‡] According to standard of care.
- § Performed 3 years after surgery and every 5 years thereafter.

[¶] Performed 1 year after surgery in patients with prior adenoma and repeated every 2–4 years if more adenomas were found. If no adenomas were found, colonoscopy was repeated every 10 years in patients >50 years old.

inhibitors) reduces the incidence of PTLD in kidney transplant recipients [176]. Data from the Spanish Tumour Registry presented at the ATOS meeting showed a similar trend in heart transplant recipients. In Spain, 60% of patients undergo induction therapy and 50% receive viral prophylaxis, which could explain why the incidence of PTLD among patients in this registry is almost half that described elsewhere [114].

4.4.3. mTOR inhibitors

In recent years, mTOR inhibitors, such as sirolimus or everolimus, have been approved for immunosuppression of transplant recipients. Compared with CNI-mediated immunosuppression, mTOR inhibitors have shown strong antiangiogenic effects that inhibit tumour growth [56,60,179].

Furthermore, mTOR inhibitors can directly target cancer cells by inhibiting their dependence on the mTOR pathway for cell growth and survival. Both in the RMR study and CONVERT trials, which assessed the conversion to a sirolimus-based CNI-free immunosuppression regimen, the malignancy rates post-conversion were significantly lower in the group who converted to treatment with mTOR inhibitors [132,133]. A multivariate analysis of post-transplant malignancies in 33,249 renal transplant recipients showed that the risk of developing *de novo* malignancies was significantly higher in the group of patients receiving CNI-based immunosuppression compared with the group receiving mTOR inhibitors (with or without CNIs) [180].

Conversion from CNIs to mTOR inhibitors or inclusion of mTOR inhibitors in a CNI-based immunosuppressive

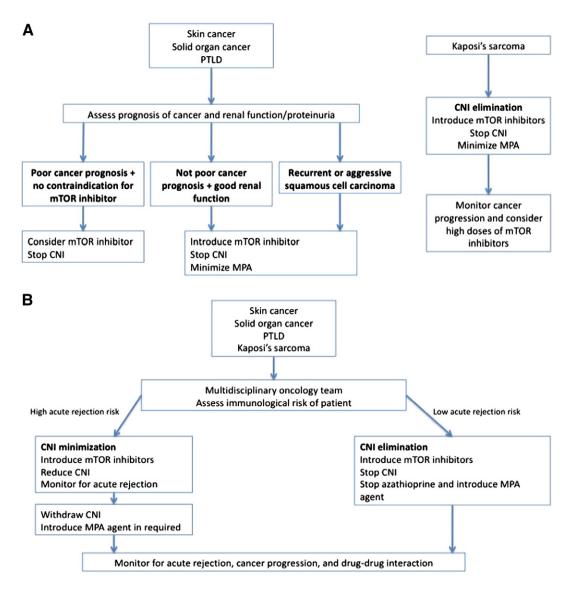


Fig. 2. Algorithm for management of common post-transplantation malignancies in renal transplant recipients (A) and heart transplant recipients (B). Adapted from Campistol 2009 [185] and Epailly et al 2011 [186]. CNI=calcineurin inhibitor; MPA=mycophenolic acid; PTLD=post-transplant lymphoproliferative disorder; mTOR=mammalian target of rapamycin.

regimen is one of the strategies recommended upon appearance of post-transplant malignancy [61,181,182]. This conversion has been particularly effective in reducing KS progression [157]. There is an ongoing prospective multicentre trial in Europe (NCT00133887) that is studying renal transplant recipients who developed a first posttransplant SCC with CNIs, to determine whether conversion to sirolimus-based immunosuppression can decrease the subsequent recurrence of SCC [183]. In renal transplantation, mTOR-inhibitor based therapies have reported a lower risk of tumour development compared with other therapy groups [133,180]. A recent metaanalysis of 56 studies in renal transplant recipients comparing de novo CNI-sparing regimens with CNIbased regimens suggested that reducing the exposure to CNI immediately after renal transplantation could result in improved clinical outcomes; however, data on malignancy rates were not reported [184].

4.4.4. Treatment algorithm for post-transplant malignancies

Algorithms for treatment of post-transplant malignancies in renal transplant (Fig. 2A) or heart transplant (Fig. 2B) recipients have been proposed [185,186]. The key aspect of these treatment algorithms is to modulate immunosuppression to reduce the burden of net immunosuppression. Minimization or elimination of CNIs forms the basis of treatment for post-transplantation malignancies. On the other hand, it is important to maintain sufficient immunosuppression to guarantee normal graft function and to prevent the risk of organ rejection. In many cases, a simple reduction or elimination of CNIs only brings about tumoural regression in 20% of patients, indicating that it might also be important to add an mTOR inhibitor to the immunosuppression regimen.

Table 11 WHO categorisation of PTLD and treatment recommendations [196-198].

Definition Treatment Stage Early lesions Infectious mononucleosis-like hyperplasia Reduction in immunosuppression Plasmacytic hyperplasia Consider antiviral treatment Consider rituximab if no response to above after 6 weeks Polymorphic lymphoproliferative disorders Reduction in immunosuppression Consider antiviral treatment Consider rituximab if no response to above after 6 weeks Consider chemotherapy if no response to rituximab Monomorphic lymphoproliferative **B-cell neoplasms** Reduction in immunosuppression disorders (by lymphoma classification) - Diffuse large B-cell lymphoma Rituximab - Burkitt/Burkitt-like lymphoma Chemotherapy - Plasmacytoma-like lesions - Plasma cell myeloma T-cell lymphomas (unusual) - Peripheral T-cell lymphoma, not otherwise specified Hodgkin's lymphoma/Hodgkin's Reduction in immunosuppression lymphoma-like lymphoproliferative disorders Rituximab Chemotherapy

4.5. Malignancy in paediatric solid-organ transplantation

Paediatric transplant recipients have a 10-fold higher risk of developing cancer than an age-matched population, and even higher, depending on the type of tumour (e.g., 200-fold and 46-fold higher risk for skin cancer and non-Hodgkin's lymphoma, respectively). In a large retrospective cohort study of 18,911 young kidney transplant recipients, malignancy-related deaths occurred at a median age of 21.0 (interquartile range [IQR] 15.8-28.0), and a median of 7.0 (IQR 3.0–12.9) years after the first transplant [187]. Malignancy-related deaths were 5.5 times more common in patients with graft function than in patients on dialysis because of graft failure. The risk of non-Hodgkin lymphoma after liver transplantation is much higher in children compared with adults: SIR 123 (95% confidence interval [CI], 3.12-686) for recipients aged less than 17 years, 55.7 (95% CI, 6.74–201) for ages 17–39 years and 9.42 (95% CI, 3.06-22.0) for ages >40 years [9]. In registries of paediatric transplantation, PTLD accounted for the majority of malignancies, followed by skin cancer [10,188-190]. The incidence of PTLD in the paediatric population depends on the organ transplanted: intestinal transplantation (30%), heart transplantation (15%), liver (5%–15%), and kidney (1%– 2%) [191-194]. Mortality from paediatric PTLD can be quite high (50%-90%) [195]. Most PTLD cases are EBVrelated B-cell tumours resulting from impaired immunity due to immunosuppressive therapy. PTLD is classified into four major categories: early lesion, monomorphic PTLD, polymorphic PTLD, and classical Hodgkin's lymphoma (CHL)type PTLD (Table 11) [196]. Timely and accurate diagnosis based on histological examination of biopsy tissue is essential for early intervention. Patients in whom primary EBV infection develops after transplantation should be managed with a reduction in immunosuppression and with

close surveillance for the development of PTLD [199,200]. Screening of EBV viral load has been shown to significantly reduce PTLD-related mortality in paediatric liver transplant recipients [167]. Antiviral drugs targeting EBV replication may be beneficial in patients with early or polymorphic PTLD [201]. Several phase II studies and retrospective studies have confirmed the efficacy of rituximab in PTLD, especially in CD20+PTLD, with early treatment showing better results [196,197,202]. Patients with localized PTLD can be treated with surgery, radiotherapy, or rituximab, whereas patients with systemic polymorphic PTLD should receive chemoimmunotherapy or rituximab. Patients should be closely monitored for EBV viral load with EBVpolymerase chain reaction. Continuation of reduction in immunosuppression and viral load monitoring or rituximab maintenance are recommended after achieving a complete response to first-line therapy [197].

5. Conclusions

The important points discussed at the 2011 ATOS meeting summarising the new concepts and best practices for understanding and effectively managing cancer and solid organ transplant recipients are described in Box 1.

Box 1 New concepts and best practices

Epidemiology

 Recipients of a kidney, liver, heart, or lung transplant are at increased risk of developing infection-related and unrelated post-transplant malignancies.

Oncogenesis

- CNI-based chronic immunosuppression causes impaired immunosurveillance, allowing malignant cell proliferation that multiplies the risk of oncoviral infection, and displays direct pro-oncogenic activity.
- Oncoviruses, such as EBV, HHV-8, and HPV, play a significant role in the development of post-transplant malignancies

Donors with cancer

 It is important to detect malignancies in donor organs; however, suggested risk categorisations for specific tumour types in organ donors illustrate that not all malignancies constitute an absolute contraindication to donation.

Transplantation candidates with a history of malignancy

 Broader eligibility criteria for transplantation have increased the number of transplant candidates with a history of previous malignancy. Tumour-specific wait periods between resolution of cancer by treatment and transplantation have been proposed; however, the patient's risk of death from organ failure without transplantation must be taken into consideration. • Liver transplantation offers the best long-term results for patients with HCC. More patients with HCC could be candidates for transplantation if the current Milan criteria were replaced with the "up-to-seven" criteria or if patients were treated with locoregional therapies that downstage their tumours to within the Milan criteria before transplantation.

Recurrence of pre-transplant cancer

- There is a broad range of cancer recurrence rates after transplantation in patients with preexisting malignancies that differ slightly according to the organ transplanted.
- There are few studies on the prevention of recurrence of HCC in liver transplant recipients. mTOR inhibitors seem to improve disease-free and survival-rates, although large prospective trials are lacking.

De novo malignancies

 To reduce and effectively manage post-transplant malignancies, active monitoring and follow-up of patients are essential. Long-term screening protocols are recommended for early detection of post-transplantation malignancies. Intensive overall screening protocols for tumour surveillance in liver transplant recipients have shown a significantly improved survival versus traditional screening programs.

Viral monitoring and prophylaxis

- Viral infection control is particularly important in patients who develop a primary viral infection and in chronic carriers of EBV, HHV-8, HPV, HBV and HCV.
- Screening of EBV viral load and introduction of prophylactic antiviral therapy against EBV have been shown to significantly reduce PTLDrelated mortality.

Immunosuppression modulation

- o Reduction in immunosuppression, conversion from CNIs to mTOR inhibitors, and inclusion of mTOR inhibitors in a CNI-based immunosuppressive regimen are some of the strategies recommended upon diagnosis of a posttransplant malignancy.
- o mTOR inhibitors are the first class of immunosuppressants to be associated in the long-term with a significant decrease in post-transplant *de novo* malignancies, and can be recommended as a cornerstone immunosuppressant for renal transplant recipients who had a pre-transplant malignancy or developed *de novo* cancer posttransplant, e.g., KS or recurrent skin cancers.

Paediatric organ transplantation

- o PLTD accounts for the majority of malignancies in paediatric organ transplantation, because children are usually EBV negative at transplantation.
- o EBV viral load should be monitored, and if viral load increases, early antiviral therapy against EBV

should be administered. Patients in whom primary EBV infection develops should be managed with a reduction in immunosuppression and close surveillance for the development of PTLD.

Acknowledgments

The authors wish to thank Roche Farma Spain for funding and organization of the ATOS meeting (Aula sobre Trasplantes de Órganos Sólidos; the Solid-Organ Transplantation Working Group).

The authors declare no conflicts of interest.

References

- Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 2000;342:605-12.
- [2] Lanza LL, Wang L, Simon TA, Irish WD. Epidemiologic critique of literature on post-transplant neoplasms in solid organ transplantation. Clin Transplant 2009;23:582-8.
- [3] Lodhi SA, Lamb KE, Meier-Kriesche HU. Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am J Transplant 2011;11:1226-35.
- [4] Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004;4:378-83.
- [5] Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant 2011;11:450-62.
- [6] Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007;370:59-67.
- [7] Kellerman L, Neugut A, Burke B, Mancini D. Comparison of the incidence of de novo solid malignancies after heart transplantation to that in the general population. Am J Cardiol 2009;103:562-6.
- [8] Kasiske BL, Snyder JJ, Gilbertson DT, Wang C. Cancer after kidney transplantation in the United States. Am J Transplant 2004;4:905-13.
- [9] Aberg F, Pukkala E, Hockerstedt K, Sankila R, Isoniemi H. Risk of malignant neoplasms after liver transplantation: a population-based study. Liver Transpl 2008;14:1428-36.
- [10] Penn I. Occurrence of cancers in immunosuppressed organ transplant recipients. Clin Transpl 1998:147-58.
- [11] Adami J, Gabel H, Lindelof B, et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br J Cancer 2003;89:1221-7.
- [12] Amital A, Shitrit D, Raviv Y, et al. Development of malignancy following lung transplantation. Transplantation 2006;81:547-51.
- [13] Engels EA, Pfeiffer RM, Fraumeni Jr JF, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA 2011;306: 1891-901.
- [14] Collett D, Mumford L, Banner NR, Neuberger J, Watson C. Comparison of the incidence of malignancy in recipients of different types of organ: a UK Registry audit. Am J Transplant 2010;10:1889-96.
- [15] Herrero JI, Lorenzo M, Quiroga J, et al. De novo neoplasia after liver transplantation: an analysis of risk factors and influence on survival. Liver Transpl 2005;11:89-97.
- [16] Herrero JI. De novo malignancies following liver transplantation: impact and recommendations. Liver Transpl 2009;15(Suppl 2):S90-4.
- [17] Jiang Y, Villeneuve PJ, Wielgosz A, Schaubel DE, Fenton SS, Mao Y. The incidence of cancer in a population-based cohort of Canadian heart transplant recipients. Am J Transplant 2010;10:637-45.

- [18] Crespo-Leiro MG, Alonso-Pulpon L, Vazquez de Prada JA, et al. Malignancy after heart transplantation: incidence, prognosis and risk factors. Am J Transplant 2008;8:1031-9.
- [19] Crespo-Leiro MG, Villa-Arranz A, Manito-Lorite N, et al. Lung cancer after heart transplantation: results from a large multicenter registry. Am J Transplant 2011;11:1035-40.
- [20] Crespo-Leiro MG, Alonso-Pulpon LA, Villa-Arranz A, et al. The prognosis of noncutaneous, nonlymphomatous malignancy after heart transplantation: data from the Spanish Post-Heart Transplant Tumour Registry. Transplant Proc 2010;42:3011-3.
- [21] Baccarani U, Adani GL, Montanaro D, et al. De novo malignancies after kidney and liver transplantations: experience on 582 consecutive cases. Transplant Proc 2006;38:1135-7.
- [22] Robbins HY, Arcasoy SM. Malignancies following lung transplantation. Clin Chest Med 2011;32:343-55.
- [23] Wimmer CD, Rentsch M, Crispin A, et al. The janus face of immunosuppression — de novo malignancy after renal transplantation: the experience of the Transplantation Center Munich. Kidney Int 2007;71:1271-8.
- [24] Danpanich E, Kasiske BL. Risk factors for cancer in renal transplant recipients. Transplantation 1999;68:1859-64.
- [25] Opelz G, Dohler B. Impact of HLA mismatching on incidence of post-transplant non-hodgkin lymphoma after kidney transplantation. Transplantation 2010;89:567-72.
- [26] Chak E, Saab S. Risk factors and incidence of de novo malignancy in liver transplant recipients: a systematic review. Liver Int 2010;30:1247-58.
- [27] Herrero JI, Pardo F, D'Avola D, et al. Risk factors of lung, head and neck, esophageal, and kidney and urinary tract carcinomas after liver transplantation: the effect of smoking withdrawal. Liver Transpl 2011;17:402-8.
- [28] Benlloch S, Berenguer M, Prieto M, et al. De novo internal neoplasms after liver transplantation: increased risk and aggressive behavior in recent years? Am J Transplant 2004;4:596-604.
- [29] Tjon AS, Sint Nicolaas J, Kwekkeboom J, et al. Increased incidence of early de novo cancer in liver graft recipients treated with cyclosporine: an association with C2 monitoring and recipient age. Liver Transpl 2010;16:837-46.
- [30] Metcalfe MJ, Kutsogiannis DJ, Jackson K, et al. Risk factors and outcomes for the development of malignancy in lung and heart-lung transplant recipients. Can Respir J 2010;17:e7-e13.
- [31] Agraharkar ML, Cinclair RD, Kuo YF, Daller JA, Shahinian VB. Risk of malignancy with long-term immunosuppression in renal transplant recipients. Kidney Int 2004;66:383-9.
- [32] Moloney FJ, Comber H, O'Lorcain P, O'Kelly P, Conlon PJ, Murphy GM. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br J Dermatol 2006;154:498-504.
- [33] Feng S, Buell JF, Cherikh WS, et al. Organ donors with positive viral serology or malignancy: risk of disease transmission by transplantation. Transplantation 2002;74:1657-63.
- [34] Campistol J, Morales J. Manejo de tumores tras el trasplante renal. Nefrologia 2009;29:33-45.
- [35] Vegso G, Toth M, Hidvegi M, et al. Malignancies after renal transplantation during 33 years at a single center. Pathol Oncol Res 2007;13:63-9.
- [36] ISHLT. The registry of the international society for heart and lung transplantation — 2010. J Heart Lung Transplant 2010;29: 1083-141.
- [37] Buell JF, Gross TG, Woodle ES. Malignancy after transplantation. Transplantation 2005;80:S254-64.
- [38] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.
- [39] Rama I, Grinyo JM. Malignancy after renal transplantation: the role of immunosuppression. Nat Rev Nephrol 2010;6:511-9.
- [40] Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401-10.

- [41] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-76.
- [42] Gutierrez-Dalmau A, Campistol JM. Immunosuppressive therapy and malignancy in organ transplant recipients: a systematic review. Drugs 2007;67:1167-98.
- [43] Dantal J, Hourmant M, Cantarovich D, et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet 1998;351:623-8.
- [44] Soulillou JP, Giral M. Controlling the incidence of infection and malignancy by modifying immunosuppression. Transplantation 2001;72:S89-93.
- [45] Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999;397:530-4.
- [46] Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21:137-48.
- [47] Bhatia A, Kumar Y. Cancer-immune equilibrium: questions unanswered. Cancer Microenviron 2011;4:209-17.
- [48] Strauss DC, Thomas JM. Transmission of donor melanoma by organ transplantation. Lancet Oncol 2010;11:790-6.
- [49] Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 2008:84:988-93.
- [50] Pagano JS, Blaser M, Buendia MA, et al. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 2004;14:453-71.
- [51] Butel JS. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 2000;21:405-26.
- [52] Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 2010;10:961-78.
- [53] Kotton CN, Fishman JA. Viral infection in the renal transplant recipient. J Am Soc Nephrol 2005;16:1758-74.
- [54] Tanner JE, Alfieri C. The Epstein–Barr virus and post-transplant lymphoproliferative disease: interplay of immunosuppression, EBV, and the immune system in disease pathogenesis. Transpl Infect Dis 2001;3:60-9.
- [55] Datta D, Contreras AG, Basu A, et al. Calcineurin inhibitors activate the proto-oncogene Ras and promote protumorigenic signals in renal cancer cells. Cancer Res 2009;69:8902-9.
- [56] Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002;8:128-35.
- [57] Herman M, Weinstein T, Korzets A, et al. Effect of cyclosporin A on DNA repair and cancer incidence in kidney transplant recipients. J Lab Clin Med 2001;137:14-20.
- [58] Yarosh DB, Pena AV, Nay SL, Canning MT, Brown DA. Calcineurin inhibitors decrease DNA repair and apoptosis in human keratinocytes following ultraviolet B irradiation. J Invest Dermatol 2005;125: 1020-5.
- [59] Maluccio M, Sharma V, Lagman M, et al. Tacrolimus enhances transforming growth factor-beta1 expression and promotes tumor progression. Transplantation 2003;76:597-602.
- [60] Koehl GE, Andrassy J, Guba M, et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation 2004;77:1319-26.
- [61] Alberu J, Pascoe MD, Campistol JM, et al. Lower malignancy rates in renal allograft recipients converted to sirolimus-based, calcineurin inhibitor-free immunotherapy: 24-month results from the CONVERT trial. Transplantation 2011;92:303-10.
- [62] Koehl GE, Wagner F, Stoeltzing O, et al. Mycophenolate mofetil inhibits tumor growth and angiogenesis in vitro but has variable antitumor effects in vivo, possibly related to bioavailability. Transplantation 2007;83:607-14.
- [63] Kauffman HM, Cherikh WS, McBride MA, Cheng Y, Hanto DW. Deceased donors with a past history of malignancy: an organ

- procurement and transplantation network/united network for organ sharing update. Transplantation 2007;84:272-4.
- [64] Ison MG, Nalesnik MA. An update on donor-derived disease transmission in organ transplantation. Am J Transplant 2011;11: 1123-30.
- [65] Ison MG, Hager J, Blumberg E, et al. Donor-derived disease transmission events in the United States: data reviewed by the OPTN/UNOS Disease Transmission Advisory Committee. Am J Transplant 2009;9:1929-35.
- [66] Garrido G, Matesanz R. The Spanish National Transplant Organization (ONT) tumor registry. Transplantation 2008;85:S61-3.
- [67] Kauffman HM, McBride MA, Delmonico FL. First report of the United Network for Organ Sharing Transplant Tumor Registry: donors with a history of cancer. Transplantation 2000;70:1747-51.
- [68] Birkeland SA, Storm HH. Risk for tumor and other disease transmission by transplantation: a population-based study of unrecognized malignancies and other diseases in organ donors. Transplantation 2002;74:1409-13.
- [69] Organización Nacional de Trasplantes registry report 2011. Available at: http://www.ont.es/infesp/Paginas/DatosdeDonacionyTrasplante.aspx. Last access: May 2012.
- [70] Buell JF, Beebe TM, Trofe J, et al. Donor transmitted malignancies. Ann Transplant 2004;9:53-6.
- [71] Myron Kauffman H, McBride MA, Cherikh WS, Spain PC, Marks WH, Roza AM. Transplant tumor registry: donor related malignancies. Transplantation 2002;74:358-62.
- [72] Feng S, Buell JF, Chari RS, DiMaio JM, Hanto DW. Tumors and transplantation: the 2003 Third Annual ASTS State-of-the-Art Winter Symposium. Am J Transplant 2003;3:1481-7.
- [73] Buell JF, Hanaway MJ, Thomas M, et al. Donor kidneys with small renal cell cancers: can they be transplanted? Transplant Proc 2005;37:581-2.
- [74] Whitson JM, Stackhouse GB, Freise CE, Meng MV, Stoller ML. Laparoscopic nephrectomy, ex vivo partial nephrectomy followed by allograft renal transplantation. Urology 2007;70(1007):e1001-3.
- [75] Kauffman HM, McBride MA, Cherikh WS, Spain PC, Delmonico FL. Transplant tumor registry: donors with central nervous system tumors1. Transplantation 2002;73:579-82.
- [76] Chui AK, Herbertt K, Wang LS, et al. Risk of tumor transmission in transplantation from donors with primary brain tumors: an Australian and New Zealand registry report. Transplant Proc 1999;31:1266-7.
- [77] EBPG (European Expert Group on Renal Transplantation); European Renal Association (ERA-EDTA); European Society for Organ Transplantation (ESOT). European Best Practice Guidelines for Renal Transplantation (part 1). Section II. Evaluation and selection of donors. Nephrol Dial Transplant 2000;15(Suppl 7):39-51.
- [78] Penn I. Transmission of cancer from organ donors. Nefrología XV 1995;205-13.
- [79] Buell JF, Alloway RR, Steve Woodle E. How can donors with a previous malignancy be evaluated? J Hepatol 2006;45:503-7.
- [80] Selected recommendations of the OPTN/UNOS living donor committee to the board of directors. Available at http://www.unos. org. Last access: May 2012.
- [81] Nalesnik MA, Woodle ES, Dimaio JM, et al. Donor-transmitted malignancies in organ transplantation: assessment of clinical risk. Am J Transplant 2011;11:1140-7.
- [82] EBPG Expert Group on Renal Transplantation. European best practice guidelines for renal transplantation. Section IV: long-term management of the transplant recipient. IV.6. Cancer risk after renal transplantation. IV.6.3. Solid organ cancers: prevention and treatment. Nephrol Dial Transplant 2002;17(Suppl 4):32-6.
- [83] Kasiske BL, Cangro CB, Hariharan S, et al. The evaluation of renal transplantation candidates: clinical practice guidelines. Am J Transplant 2001;1(Suppl 2):3-95.
- [84] Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996;334:693-9.

- [85] Benten D, Sterneck M, Panse J, Rogiers X, Lohse AW. Low recurrence of preexisting extrahepatic malignancies after liver transplantation. Liver Transpl 2008;14:789-98.
- [86] Penn I. The effect of immunosuppression on pre-existing cancers. Transplantation 1993;55:742-7.
- [87] Uberfuhr P, Meiser B, Fuchs A, et al. Heart transplantation: an approach to treating primary cardiac sarcoma? J Heart Lung Transplant 2002;21:1135-9.
- [88] Vegso G, Gorog D, Fehervari I, et al. Role of organ transplantation in the treatment of malignancies — hepatocellular carcinoma as the most common tumour treated with transplantation. Pathol Oncol Res 2012;18:1-10.
- [89] Sotiropoulos GC, Druhe N, Sgourakis G, et al. Liver transplantation, liver resection, and transarterial chemoembolization for hepatocellular carcinoma in cirrhosis: which is the best oncological approach? Dig Dis Sci 2009;54:2264-73.
- [90] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.
- [91] Center MM, Jemal A. International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev 2011;20:2362-8.
- [92] Iwatsuki S, Starzl TE, Sheahan DG, et al. Hepatic resection versus transplantation for hepatocellular carcinoma. Ann Surg 1991;214: 221-8 [discussion 228-9].
- [93] Yao FY, Ferrell L, Bass NM, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology 2001;33:1394-403.
- [94] Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol 2009;10:35-43.
- [95] Befeler AS, Hayashi PH, Di Bisceglie AM. Liver transplantation for hepatocellular carcinoma. Gastroenterology 2005;128:1752-64.
- [96] Llovet JM, Di Bisceglie AM, Bruix J, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 2008;100:698-711.
- [97] Onaca N, Davis GL, Goldstein RM, Jennings LW, Klintmalm GB. Expanded criteria for liver transplantation in patients with hepatocellular carcinoma: a report from the International Registry of Hepatic Tumors in Liver Transplantation. Liver Transpl 2007;13: 391-9.
- [98] Kneteman NM, Oberholzer J, Al Saghier M, et al. Sirolimus-based immunosuppression for liver transplantation in the presence of extended criteria for hepatocellular carcinoma. Liver Transpl 2004; 10:1301-11
- [99] Roayaie S, Frischer JS, Emre SH, et al. Long-term results with multimodal adjuvant therapy and liver transplantation for the treatment of hepatocellular carcinomas larger than 5 centimeters. Ann Surg 2002;235:533-9.
- [100] Duffy JP, Vardanian A, Benjamin E, et al. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. Ann Surg 2007;246:502-9 [discussion 509-11].
- [101] Leung JY, Zhu AX, Gordon FD, et al. Liver transplantation outcomes for early-stage hepatocellular carcinoma: results of a multicenter study. Liver Transpl 2004;10:1343-54.
- [102] Decaens T, Roudot-Thoraval F, Hadni-Bresson S, et al. Impact of UCSF criteria according to pre- and post-OLT tumor features: analysis of 479 patients listed for HCC with a short waiting time. Liver Transpl 2006;12:1761-9.
- [103] Vitale A, Morales RR, Zanus G, et al. Barcelona Clinic Liver Cancer staging and transplant survival benefit for patients with hepatocellular carcinoma: a multicentre, cohort study. Lancet Oncol 2011;12: 654-62.
- [104] Majno PE, Adam R, Bismuth H, et al. Influence of preoperative transarterial lipiodol chemoembolization on resection and transplantation for hepatocellular carcinoma in patients with cirrhosis. Ann Surg 1997;226:688-701 [discussion 701-683].

- [105] Gordon-Weeks AN, Snaith A, Petrinic T, Friend PJ, Burls A, Silva MA. Systematic review of outcome of downstaging hepatocellular cancer before liver transplantation in patients outside the Milan criteria. Br J Surg 2011;98:1201-8.
- [106] Bargellini I, Vignali C, Cioni R, et al. Hepatocellular carcinoma: CT for tumor response after transarterial chemoembolization in patients exceeding Milan criteria — selection parameter for liver transplantation. Radiology 2010;255:289-300.
- [107] Orens JB, Estenne M, Arcasoy S, et al. International guidelines for the selection of lung transplant candidates: 2006 update — a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2006;25:745-55.
- [108] de Perrot M, Chernenko S, Waddell TK, et al. Role of lung transplantation in the treatment of bronchogenic carcinomas for patients with end-stage pulmonary disease. J Clin Oncol 2004;22: 4351-6
- [109] Verleden GM, Fisher AJ. Lung transplantation and lung cancer: is there a link? Respiration 2011;81:441-5.
- [110] Laskin JJ. Bronchoalveolar carcinoma: current treatment and future trends. Clin Lung Cancer 2004;6(Suppl 2):S75-9.
- [111] Breathnach OS, Kwiatkowski DJ, Finkelstein DM, et al. Bronchioloalveolar carcinoma of the lung: recurrences and survival in patients with stage I disease. J Thorac Cardiovasc Surg 2001;121:42-7.
- [112] Garver Jr RI, Zorn GL, Wu X, McGiffin DC, Young Jr KR, Pinkard NB. Recurrence of bronchioloalveolar carcinoma in transplanted lungs. N Engl J Med 1999;340:1071-4.
- [113] Paloyan EB, Swinnen LJ, Montoya A, Lonchyna V, Sullivan HJ, Garrity E. Lung transplantation for advanced bronchioloalveolar carcinoma confined to the lungs. Transplantation 2000;69:2446-8.
- [114] Roithmaier S, Haydon AM, Loi S, et al. Incidence of malignancies in heart and/or lung transplant recipients: a single-institution experience. J Heart Lung Transplant 2007;26:845-9.
- [115] Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: twentyseventh official adult heart transplant report — 2010. J Heart Lung Transplant 2010;29:1089-103.
- [116] Almenar L, Segovia J, Crespo-Leiro MG, et al. Spanish Heart Transplantation Registry. 21st official report of the Spanish Society of Cardiology Working Group on Heart Failure and Heart Transplantation (1984–2009). Rev Esp Cardiol 2010;63:1317-28.
- [117] Girndt M, Kohler H. Waiting time for patients with history of malignant disease before listing for organ transplantation. Transplantation 2005;80:S167-70.
- [118] EBPG (European Group on Renal Transplantation); European Renal Association (ERA-EDTA); European Society for Organ Transplantation (ESOT). European Best Practice Guidelines for Renal Transplantation (part 1). Section I: Evaluation, selection and preparation of the potential transplant recipient. I.5. Risk factors/relative contra-indications. Nephrol Dial Transplant 2000;15(Suppl 7):6-25.
- [119] Castroagudin JF, Molina E, Bustamante M, et al. Orthotopic liver transplantation for hepatocellular carcinoma: a thirteen-year singlecenter experience. Transplant Proc 2008;40:2975-7.
- [120] Toso C, Mentha G, Majno P. Liver transplantation for hepatocellular carcinoma: five steps to prevent recurrence. Am J Transplant 2011; 11:2031-5.
- [121] Zhou J, Wang Z, Wu ZQ, et al. Sirolimus-based immunosuppression therapy in liver transplantation for patients with hepatocellular carcinoma exceeding the Milan criteria. Transplant Proc 2008;40: 3548-53.
- [122] Vivarelli M, Dazzi A, Zanello M, et al. Effect of different immunosuppressive schedules on recurrence-free survival after liver transplantation for hepatocellular carcinoma. Transplantation 2010; 89:227-31.
- [123] Chinnakotla S, Davis GL, Vasani S, et al. Impact of sirolimus on the recurrence of hepatocellular carcinoma after liver transplantation. Liver Transpl 2009;15:1834-42.

- [124] Schnitzbauer AA, Zuelke C, Graeb C, et al. A prospective randomised, open-labeled, trial comparing sirolimus-containing versus mTOR-inhibitor-free immunosuppression in patients undergoing liver transplantation for hepatocellular carcinoma. BMC Cancer 2010;10:190.
- [125] Gomez-Martin C, Bustamante J, Castroagudin JF, et al. Efficacy and safety of sorafenib in combination with mammalian target of rapamycin inhibitors for recurrent hepatocellular carcinoma after liver transplantation. Liver Transpl 2012;18:45-52.
- [126] Toso C, Asthana S, Bigam DL, Shapiro AM, Kneteman NM. Reassessing selection criteria prior to liver transplantation for hepatocellular carcinoma utilizing the Scientific Registry of Transplant Recipients database. Hepatology 2009;49:832-8.
- [127] Xu J, Shen ZY, Chen XG, et al. A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology 2007;45:269-76.
- [128] Toso C, Merani S, Bigam DL, Shapiro AM, Kneteman NM. Sirolimus-based immunosuppression is associated with increased survival after liver transplantation for hepatocellular carcinoma. Hepatology 2010;51:1237-43.
- [129] Opelz G, Dohler B. Treatment of kidney transplant recipients with ACEi/ARB and risk of respiratory tract cancer: a collaborative transplant study report. Am J Transplant 2011;11:2483-9.
- [130] Dantal J, Soulillou JP. Immunosuppressive drugs and the risk of cancer after organ transplantation. N Engl J Med 2005;352:1371-3.
- [131] Molina BD, Leiro MG, Pulpon LA, et al. Incidence and risk factors for nonmelanoma skin cancer after heart transplantation. Transplant Proc 2010;42:3001-5.
- [132] Schena FP, Pascoe MD, Alberu J, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 2009;87:233-42.
- [133] Campistol JM, Eris J, Oberbauer R, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol 2006;17:581-9.
- [134] Shroff R, Rees L. The post-transplant lymphoproliferative disordera literature review. Pediatr Nephrol 2004;19:369-77.
- [135] Dierickx D, Tousseyn T, De Wolf-Peeters C, Pirenne J, Verhoef G. Management of post-transplant lymphoproliferative disorders following solid organ transplant: an update. Leuk Lymphoma 2011;52:950-61.
- [136] Torpey N. Renal transplantation. Oxford, England: Oxford Specialist Handbooks; 2010.
- [137] Winkelhorst JT, Brokelman WJ, Tiggeler RG, Wobbes T. Incidence and clinical course of de-novo malignancies in renal allograft recipients. Eur J Surg Oncol 2001;27:409-13.
- [138] Jain AB, Yee LD, Nalesnik MA, et al. Comparative incidence of de novo nonlymphoid malignancies after liver transplantation under tacrolimus using surveillance epidemiologic end result data. Transplantation 1998;66:1193-200.
- [139] Angel LF, Cai TH, Sako EY, Levine SM. Post-transplant lymphoproliferative disorders in lung transplant recipients: clinical experience at a single center. Ann Transplant 2000;5:26-30.
- [140] Libertiny G, Watson CJ, Gray DW, Welsh KI, Morris PJ. Rising incidence of post-transplant lymphoproliferative disease in kidney transplant recipients. Br J Surg 2001;88:1330-4.
- [141] Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet 1993;342:1514-6.
- [142] Jamil B, Nicholls K, Becker GJ, Walker RG. Impact of acute rejection therapy on infections and malignancies in renal transplant recipients. Transplantation 1999;68:1597-603.
- [143] Durrbach A, Pestana JM, Pearson T, et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant 2010;10:547-57.
- [144] Vincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant 2010;10:535-46.

- [145] Vincenti F, Larsen CP, Alberu J, et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant 2012;12:210-7.
- [146] Berber I, Altaca G, Aydin C, et al. Kaposi's sarcoma in renal transplant patients: predisposing factors and prognosis. Transplant Proc 2005;37:967-8.
- [147] Euvrard S, Kanitakis J. Skin cancers after liver transplantation: what to do? J Hepatol 2006;44:27-32.
- [148] Regamey N, Tamm M, Wernli M, et al. Transmission of human herpesvirus 8 infection from renal-transplant donors to recipients. N Engl J Med 1998;339:1358-63.
- [149] Cattani P, Capuano M, Graffeo R, et al. Kaposi's sarcoma associated with previous human herpesvirus 8 infection in kidney transplant recipients. J Clin Microbiol 2001;39:506-8.
- [150] Emond JP, Marcelin AG, Dorent R, et al. Kaposi's sarcoma associated with previous human herpesvirus 8 infection in heart transplant recipients. J Clin Microbiol 2002;40:2217-9.
- [151] Marcelin AG, Roque-Afonso AM, Hurtova M, et al. Fatal disseminated Kaposi's sarcoma following human herpesvirus 8 primary infections in liver-transplant recipients. Liver Transpl 2004;10:295-300.
- [152] Cai Q, Verma SC, Lu J, Robertson ES. Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 2010;78:87-142.
- [153] Einollahi B. Kaposi sarcoma after kidney transplantation. Iran J Kidney Dis 2007;1:2-11.
- [154] Volkow P, Zinser JW, Correa-Rotter R. Molecularly targeted therapy for Kaposi's sarcoma in a kidney transplant patient: case report, "what worked and what did not". BMC Nephrol 2007;8:6.
- [155] Nichols LA, Adang LA, Kedes DH. Rapamycin blocks production of KSHV/HHV8: insights into the anti-tumor activity of an immunosuppressant drug. PLoS One 2011;6:e14535.
- [156] Lebbe C, Legendre C, Frances C. Kaposi sarcoma in transplantation. Transplant Rev (Orlando) 2008;22:252-61.
- [157] Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N Engl J Med 2005;352:1317-23.
- [158] Bouwes Bavinck JN, Berkhout RJ. HPV infections and immunosuppression. Clin Dermatol 1997:15:427-37.
- [159] Rudlinger R, Smith IW, Bunney MH, Hunter JA. Human papillomavirus infections in a group of renal transplant recipients. Br J Dermatol 1986;115:681-92.
- [160] Klatte T, Seitz C, Waldert M, et al. Features and outcomes of renal cell carcinoma of native kidneys in renal transplant recipients. BJU Int 2010;105:1260-5.
- [161] Tsivian M, Caso JR, Kimura M, Polascik TJ. Renal tumors in solid organ recipients: Clinical and pathologic features. Urol Oncol. (in press).
- [162] Vegso G, Toronyi E, Hajdu M, et al. Renal cell carcinoma of the native kidney: a frequent tumor after kidney transplantation with favorable prognosis in case of early diagnosis. Transplant Proc 2011;43:1261-3.
- [163] Crespo-Leiro MG, Alonso-Pulpon L, Arizon JM, et al. Influence of induction therapy, immunosuppressive regimen and anti-viral prophylaxis on development of lymphomas after heart transplantation: data from the Spanish Post-Heart Transplant Tumour Registry. J Heart Lung Transplant 2007;26:1105-9.
- [164] KDIGO. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009;9:S1-S155.
- [165] USPSTF. Screening for skin cancer: U.S. preventive service task force recommendation statement. Ann Intern Med 2009:188-93.
- [166] Kasiske BL, Vazquez MA, Harmon WE, et al. Recommendations for the outpatient surveillance of renal transplant recipients. American Society of Transplantation. J Am Soc Nephrol 2000; 11(Suppl 15):S1-S86.
- [167] Kerkar N, Morotti RA, Madan RP, et al. The changing face of posttransplant lymphoproliferative disease in the era of molecular EBV monitoring. Pediatr Transplant 2010;14:504-11.

- [168] Mandelblatt JS, Lawrence WF, Gaffikin L, et al. Costs and benefits of different strategies to screen for cervical cancer in less-developed countries. J Natl Cancer Inst 2002;94:1469-83.
- [169] Mandelblatt JS, Cronin KA, Bailey S, et al. Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann Intern Med 2009;151:738-47.
- [170] Lim LS, Sherin K. Screening for prostate cancer in U.S. men ACPM position statement on preventive practice. Am J Prev Med 2008;34: 164-70
- [171] Rex DK, Johnson DA, Anderson JC, Schoenfeld PS, Burke CA, Inadomi JM. American College of Gastroenterology guidelines for colorectal cancer screening 2009 [corrected]. Am J Gastroenterol 2009:104:739-50.
- [172] Calonge N, Petitti DB, DeWitt TG, et al, on behalf of the U.S. Preventive Services Task Force. Screening for colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2008;149:627-37.
- [173] Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409.
- [174] Finkenstedt A, Graziadei IW, Oberaigner W, et al. Extensive surveillance promotes early diagnosis and improved survival of de novo malignancies in liver transplant recipients. Am J Transplant 2009:9:2355-61.
- [175] Herrero JI, Alegre F, Quiroga J, et al. Usefulness of a program of neoplasia surveillance in liver transplantation. A preliminary report. Clin Transplant 2009;23:532-6.
- [176] Opelz G, Daniel V, Naujokat C, Fickenscher H, Dohler B. Effect of cytomegalovirus prophylaxis with immunoglobulin or with antiviral drugs on post-transplant non-Hodgkin lymphoma: a multicentre retrospective analysis. Lancet Oncol 2007;8:212-8.
- [177] Swinnen LJ, Costanzo-Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med 1990;323:1723-8.
- [178] Bakker NA, van Imhoff GW, Verschuuren EA, van Son WJ. Presentation and early detection of post-transplant lymphoproliferative disorder after solid organ transplantation. Transpl Int 2007;20:207-18.
- [179] Geissler EK, Schlitt HJ, Thomas G. mTOR, cancer and transplantation. Am J Transplant 2008;8:2212-8.
- [180] Kauffman HM, Cherikh WS, Cheng Y, Hanto DW, Kahan BD. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 2005;80:883-9.
- [181] Zuckermann A, Manito N, Epailly E, et al. Multidisciplinary insights on clinical guidance for the use of proliferation signal inhibitors in heart transplantation. J Heart Lung Transplant 2008;27:141-9.
- [182] Kahan BD, Yakupoglu YK, Schoenberg L, et al. Low incidence of malignancy among sirolimus/cyclosporine-treated renal transplant recipients. Transplantation 2005;80:749-58.
- [183] Rostaing L, Kamar N. mTOR inhibitor/proliferation signal inhibitors: entering or leaving the field? J Nephrol 2010;23:133-42.
- [184] Sharif A, Shabir S, Chand S, Cockwell P, Ball S, Borrows R. Metaanalysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. J Am Soc Nephrol 2011;22:2107-18.
- [185] Campistol JM. Minimizing the risk of post-transplant malignancy. Transplantation 2009;87:S19-22.

- [186] Epailly E, Albanell J, Andreassen A, et al. Proliferation signal inhibitors and post-transplant malignancies in heart transplantation: practical clinical management questions. Clin Transplant 2011;25: E475-86.
- [187] Foster BJ, Dahhou M, Zhang X, Platt RW, Hanley JA. Change in mortality risk over time in young kidney transplant recipients. Am J Transplant 2011;11:2432-42.
- [188] Debray D, Baudouin V, Lacaille F, et al. De novo malignancy after solid organ transplantation in children. Transplant Proc 2009;41: 674-5.
- [189] Buell JF, Gross TG, Thomas MJ, et al. Malignancy in pediatric transplant recipients. Semin Pediatr Surg 2006;15:179-87.
- [190] Ng VL, Fecteau A, Shepherd R, et al. Outcomes of 5-year survivors of pediatric liver transplantation: report on 461 children from a north american multicenter registry. Pediatrics 2008;122:e1128-35.
- [191] Dharnidharka VR, Sullivan EK, Stablein DM, Tejani AH, Harmon WE. Risk factors for post-transplant lymphoproliferative disorder (PTLD) in pediatric kidney transplantation: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Transplantation 2001;71:1065-8.
- [192] Gao SZ, Chaparro SV, Perlroth M, et al. Post-transplantation lymphoproliferative disease in heart and heart-lung transplant recipients: 30-year experience at Stanford University. J Heart Lung Transplant 2003;22:505-14.
- [193] Lee TC, Savoldo B, Barshes NR, et al. Use of cytokine polymorphisms and Epstein–Barr virus viral load to predict development of post-transplant lymphoproliferative disorder in paediatric liver transplant recipients. Clin Transplant 2006;20:389-93.
- [194] Reyes J, Bueno J, Kocoshis S, et al. Current status of intestinal transplantation in children. J Pediatr Surg 1998;33:243-54.
- [195] Faye A, Vilmer E. Post-transplant lymphoproliferative disorder in children: incidence, prognosis, and treatment options. Paediatr Drugs 2005;7:55-65.
- [196] Parker A, Bowles K, Bradley JA, et al. Management of posttransplant lymphoproliferative disorder in adult solid organ transplant recipients — BCSH and BTS guidelines. Br J Haematol 2010;149:693-705.
- [197] Post-transplant lymphoproliferative disorder section integrated into updated NCCN guidelines for NHL. J Natl Compr Canc Netw 2011:9:xxxiii-xli.
- [198] Madan RP, Herold BC. Viral infections in pediatric solid organ transplantation recipients and the impact of molecular diagnostic testing. Curr Opin Organ Transplant 2010;15:293-300.
- [199] Boyle GJ, Michaels MG, Webber SA, et al. Post-transplantation lymphoproliferative disorders in pediatric thoracic organ recipients. J Pediatr 1997;131:309-13.
- [200] Reshef R, Vardhanabhuti S, Luskin MR, et al. Reduction of immunosuppression as initial therapy for post-transplantation lymphoproliferative disorder (bigstar). Am J Transplant 2011;11:336-47.
- [201] Hanto DW, Frizzera G, Gajl-Peczalska KJ, et al. Epstein—Barr virusinduced B-cell lymphoma after renal transplantation: acyclovir therapy and transition from polyclonal to monoclonal B-cell proliferation. N Engl J Med 1982;306:913-8.
- [202] Evens AM, David KA, Helenowski I, et al. Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease: outcomes and prognostic factors in the modern era. J Clin Oncol 2010;28:1038-46.